US 2017/0131920 Al

STORAGE VIRTUALIZATION OFFLOAD

BACKGROUND

[0001] Some types of storage devices have performance
capabilities that can be difficult to fully utilize in some
circumstances. Consider, for example, a computer having a
CPU connected through a PCle (Peripheral Component
Interconnect Express) bus to an SSD (solid state device) that
implements a version of the NVMe (Non-Volatile Memory
express) logical device interface standard. The SSD’s cost
might have the same order of magnitude as the cost of a
traditional disk drive, and yet in the same computer with the
same high-speed bus, the SSD’s latency and throughput
performance might be an order of magnitude greater than a
spinning type of disk drive. In other words, when attached
through a high performance bus such as a PCle bus, an
SSD’s latency and throughput can improve to the point
where the storage device has fundamentally different char-
acteristics than other types of block-based storage devices
such as disk drives with spinning media.

[0002] The availability of high speed buses brings to the
fore the performance differences between SSDs and tradi-
tional spinning disk drives. On a high speed bus such as a
PCle bus, an SDD’s net latency and throughput can be
significantly superior to that of a spinning disk drive. For
example, an SSD attached through a PCle bus might have a
few microseconds of latency and might be capable of tens or
hundreds of gigabits per second of throughput.

[0003] Much software for accessing storage devices has
been designed with assumptions that persistent block-based
storage will be relatively slow. For example, an operating
system might be designed to deprioritize processes access-
ing storage, since they will likely have idle cycles while
waiting for storage to respond. Also, because storage has
been slow relative to processors and memory, complex
memory-demanding caching schemes are often used to
improve effective storage performance. Typically, the
memory used for caching can add significant cost and power
load to a computing system. If storage were able to be
accessed at speeds close to processor speed, less memory
and power would be required.

[0004] The lag of storage speed has affected the progress
of virtualization technology. While some aspects of storage
virtualization have been implemented in hardware, other
aspects of storage virtualization discussed herein have
lacked justification and have not previously been consid-
ered, since virtualizing in software has proven sufficient.
Storage systems have not been able to provide sufficient data
throughput to justify non-software virtualization solutions.
In addition, merely throwing additional CPU cycles at an
operating system or virtualization software will not neces-
sarily improve performance. Devices such as NVMe SSDs
can exchange data with a system at rates that can impact the
system’s CPU; CPU load generally increases with the rate of
data exchange. As storage decreases in cost and therefore
increases in amount, the high throughput rates of such
devices will tax the host system. If a portion of a host’s
processing capacity is dedicated to handling storage, as
storage increases, less processing becomes available for
other purposes.

[0005] Moreover, some software is designed to limit stor-
age latency or throughput. When a virtual machine, for
example, requests access to storage, a delay might be built
in because on average such requests are shortly followed by

May 11,2017

other requests. This deferment or batching of requests
reduces the number of relatively slow switches between a
hypervisor context and a virtual machine context. If a
storage device and its attachment are capable of -30 us
latency, an artificial 200 us batching delay reduces utiliza-
tion of the storage hardware. And yet, if the virtualization
software is tuned to work at 30 us, its CPU consumption
could increase significantly (to handle the increased data
throughput and access to the storage hardware).

[0006] It would be beneficial if there were convenient and
cost-effective ways to improve storage virtualization effi-
ciency. Techniques to that effect are described herein.

SUMMARY

[0007] The following summary is included only to intro-
duce some concepts discussed in the Detailed Description
below. This summary is not comprehensive and is not
intended to delineate the scope of the claimed subject matter,
which is set forth by the claims presented at the end.
[0008] Embodiments relate to off-loading aspects of stor-
age virtualization to storage hardware and modifying soft-
ware to take advantage of hardware virtualization features.
A co-design of hardware and software allows a filesystem to
provide files such that indirection overhead normally needed
to access the content of files can be bypassed while still
managing the files as filesystem objects. A storage device
manages and exposes a virtual volume which is used to store
the content of a file. Virtual volumes can be initialized or
populated so that virtual blocks therein align with device
storage blocks. A virtual volume can be initialized and
populated by parsing a virtual disk file to access virtual disk
metadata, which is then used to determine and set features
of the virtual volume.

[0009] Many of the attendant features will be explained
below with reference to the following detailed description
considered in connection with the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

[0010] The present description will be better understood
from the following detailed description read in light of the
accompanying drawings, wherein like reference numerals
are used to designate like parts in the accompanying descrip-
tion.

[0011] FIG. 1 shows an example of a computing device
with a storage software stack that provides virtualized
block-based access to a virtual machine.

[0012] FIG. 2 shows details of how elements at different
storage layers can perform indirection.

[0013] FIG. 3 shows an overview of how one or more
layers of software indirection can be avoided without nec-
essarily losing the conveniences of using a filesystem to
manage and access a virtual disk file.

[0014] FIG. 4 shows a conceptual diagram of alignment
between storage layers.

[0015] FIG. 5 shows a storage device with virtual volume
features.
[0016] FIG. 6 shows an embodiment for configuring a

virtual volume according to content in an existing filesys-
tem.

[0017] FIG. 7 shows an embodiment for initializing a
virtual volume by copying in data rather than allocating
device blocks on the storage device.



